Characterizing the microscopic occurrence and distribution of in-situ pore water and oil is crucial for resource estimation and development method selection of shale oil. In this paper, a series of nuclear magnetic resonance (NMR) experiments were conducted on shales from the Gulong Sag, Songliao Basin, China, at AR, WR-AR, WOR-AR, Dry, SO, and WR states. In-situ pore water and oil were reconstructed after WOR-AR. An improved T1–T2 pattern for shale oil reservoirs comprising water and oil was proposed to classify and quantitatively detect pore fluids at different occurrence states. The total and free oil contents derived from NMR T1–T2 spectra at AR states were found to correlate well with those from multistage Rock-Eval. Moreover, the NMR-calculated total and free oil are generally larger than those measured from multistage Rock-Eval, whereas adsorbed oil is the opposite, which implies that adsorbed, bound, and movable oils in shale pores can be accurately and quantitatively detected via NMR, without absorbed hydrocarbons in kerogen. As per the NMR T2 and T1–T2 spectra at WOR-AR state, the microdistributions of in-situ pore water and oil were clearly demonstrated. Adsorbed, bound, and movable oils primarily occur in the micropores (<100 nm), mesopores (100–1000 nm), and macropores (>1000 nm), respectively, whereas capillary-bound water is primarily correlated with micropores. Thus, the microscopic occurrence and distribution of adsorbed oil are remarkably affected by pore water, followed by bound oil, and movable oil is hardly affected. This study would be helpful in further understanding the microscopic occurrence characteristics of pore fluids in-situ shale oil reservoirs.
Read full abstract