ABSTRACTMost existing shadow detection models and algorithms require extensive calculations and have difficulties effectively removing features, such as water bodies, some dark objects and bluish ground objects. In this paper, we propose a high-resolution automatic shadow extraction algorithm based on the process of histogram fitting. First, the histogram of the whole image is fitted by fourth and fifth-degree polynomials according to the histogram difference of the near-infrared bands of different shadow areas in the remotely sensed image. Second, the shadow area is preliminarily extracted based on the relationships between the shadow features of the remote sensing image and the intersections of the fourth- and fifth-degree polynomials. Then, the normalized difference water index (NDWI) is applied to extract the water bodies. Finally, to obtain the shaded area, the scanning line seed filling algorithm is applied to remove the water bodies falsely detected as shadows in the preliminary shading extraction. The proposed algorithm is evaluated by using the various high-resolution images including GaoFen-1 (GF-1), GaoFen-2 (GF-2), QuickBird2, and ZiYuan-3 (ZY-3), as well as an elaborate comparison to histogram threshold segmentation algorithms such as Component 3 (C3) algorithm, multi-elements extraction algorithm multi-band detection algorithm, and spectral correlation algorithm based on spectral features. The results of experiment showed that the proposed algorithm could extract the shadows of various images, achieve satisfied results, and completely remove water bodies.
Read full abstract