IntroductionTo gain insight into mechanisms of preeclampsia (PE)-dependent proteinuria, this study focused on whether preeclampsia serum (PES) could induce hyperpermeability in human renal glomerular endothelial cells (HRGECs) via the miRNAs-Caveolin-1 (CAV-1)-dependent pathway. MethodsBioinformatics approach was used to identify miRNAs targeting CAV1. Normal pregnancy serum (NPS) and severe PES were used to treat HRGECs monolayer to demonstrate if PES could induce the expression of identified miRNAs. A luciferase reporter assay was used to determine whether CAV1 was a direct target of miR-199a-5p, miR-199b-5p, and miR-204. The relationship between the expression of miR-199a-5p, miR-199b-5p, miR-204, and CAV1 in HRGECs was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. The gain-of-function and loss‐of‐function experiments were performed on HRGECs to investigate the effects of miR-199a-5p, miR-199b-5p, miR-204 on HRGECs permeability. ResultsWe identified that CAV1 3′UTR has putative binding sites for miR-199a-5p, miR-199b-5p, and miR-204, whereas miR-199a-5p does not appear to be a direct regulator of CAV1. We detected that PE serum downregulated the expression of miR-199a-5p, miR-199b-5p and miR-204, increased expression of CAV1 and increased cell monolayer permeability in HRGECs. The level of CAV1 and permeability decreased when miR-199b-5p or miR-204, but not miR-199a-5p, were overexpressed. DiscussionmiR-199b-5p and miR-204 may play a role in PES-induced increasing permeability of HRGECs by regulating CAV1 expression.
Read full abstract