Whole-cell inactivated vaccines (bacterins) are the only licensed vaccines available for leptospirosis prevention and control, especially in domestic and farm animals. However, despite their widespread use, inconsistencies in their efficacy have been reported. Because immunity induced by bacterins is mainly mediated by antibodies against leptospiral lipopolysaccharides, the involvement of cellular responses is not well-known. The aim of this study was to investigate the efficacy and characterize the humoral and cellular immune responses induced by whole-cell inactivated leptospirosis bacterin formulations containing serovars Bratislava, Canicola, Copenhageni, Grippotyphosa, Hardjoprajitno, and Pomona. For the potency test, hamsters were immunized with one dose of polyvalent bacterins (either commercial or experimental) and then challenged with a virulent Pomona strain. Serological (MAT and IgM and IgG-ELISA) and cellular (cytokine transcription in blood evaluated by RT-qPCR) analyses were performed. The results revealed that vaccination with either bacterin formulation was able to protect 90–100% of the hamsters infected with the Pomona serovar, although most of the surviving animals remained as renal carriers. Specific agglutinating antibodies and significant levels of IgM, IgG, and IgG2 (P < 0.05) that were able to react with the six serovars present in the vaccine formulations were produced, indicating that the vaccines can potentially provide immunity against all strains. The protective immunity of these vaccines was mainly mediated by balanced a Th1/Th2 response, characterized by increased IFN-γ, IL-10 and IL-α transcription. These data support the importance of characterizing immunological responses involved in bacterin efficacy and investing in the improvement of these vaccine formulations.
Read full abstract