For an odd prime p, let Ep(X)=∑n=0∞anXn∈Fp[[X]]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{\\,\ extrm{E}\\,}}_{p}(X)=\\sum _{n=0}^{\\infty } a_{n}X^{n}\\in {\\mathbb {F}}_p[[X]]$$\\end{document} denote the reduction modulo p of the Artin-Hasse exponential series. It is known that there exists a series G(Xp)∈Fp[[X]]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$G(X^p)\\in {\\mathbb {F}}_{p}[[X]]$$\\end{document}, such that Lp-1(-T(X))(X)=Ep(X)·G(Xp)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L_{p-1}^{(-T(X))}(X)={{\\,\ extrm{E}\\,}}_{p}(X)\\cdot G(X^p)$$\\end{document}, where T(X)=∑i=1∞Xpi\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T(X)=\\sum _{i=1}^{\\infty }X^{p^{i}}$$\\end{document} and Lp-1(α)(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L_{p-1}^{(\\alpha )}(X)$$\\end{document} denotes the (generalized) Laguerre polynomial of degree p-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p-1$$\\end{document}. We prove that G(Xp)=∑n=0∞(-1)nanpXnp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$G(X^p)=\\sum _{n=0}^{\\infty }(-1)^n a_{np}X^{np}$$\\end{document}, and show that it satisfies G(Xp)G(-Xp)T(X)=Xp.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ G(X^p)\\,G(-X^p)\\,T(X)=X^p. $$\\end{document}
Read full abstract