Osteoporosis is induced by an imbalance between osteogenesis and bone resorption, and is treated with osteogenic drugs and/or resorption inhibitors. Resorption inhibitors, such as bisphosphonates, are orally used; however, orally active small molecules with osteogenic activity are not clinically available. We synthesized various types of small molecules and identified a series of diphenylamine and diphenylether derivatives that promoted osteoblast differentiation. Among them, diphenylether derivatives 13a, 13g, and 13h potently promoted osteoblast differentiation (EC200 for increasing alkaline phosphatase activity = 11.3, 31.1, and 12.3 nM, respectively) and inhibited cyclin-dependent kinase 8 (CDK8) activity (IC50 = 2.5, 7.8, and 3.9 nM, respectively), suggesting that their osteoblastgenic effects are mediated by the inhibition of CDK8. The ratio of the maximal plasma concentration after oral administration at 10 mg/kg in female rats and EC200 for osteoblastogenesis was 148.1 for compound 13a, 53.4 for 13g, and 101.8 for 13h, indicating possible in vivo osteoblastogenic and osteogenic effects. In ovariectomized female rats, 13g and 13h at 10 mg/kg/d for 8 weeks increased plasma bone-type alkaline phosphatase activity, indicating enhanced in vivo osteoblastogenesis. Furthermore, micro-computed tomography (micro-CT) showed that both compounds increased femoral cortical bone volume and mineral contents, which were unaffected by ovariectomy, while having negligible effects on trabecular bone volume and mineral contents, which were markedly reduced by ovariectomy. In conclusion, diphenylamine and diphenylether structures are novel scaffolds for osteoblastogenesis enhancers via the inhibition of CDK8. Among them, 13g and 13h are candidates for anti-osteoporotic drugs with cortical bone-selective osteogenic effects.
Read full abstract