Hypochlorous acid, produced by myeloperoxidase upon neutrophil activation, can oxidize various compounds and exert antimicrobial activity in vivo. To elucidate the mechanisms underlying the reactions of the unsaturated phosphatidylcholines, which abound in cell membranes, with hypochlorous acid, we identified and examined phosphatidylcholine chlorination and oxidation products formed under various reaction conditions. We first investigated the products of unsaturated phosphatidylcholine and hypochlorous acid reaction with respect to hypochlorite concentration and reaction time. Next, we examined the lipids extracted postmortem from human abscesses. For all the analyses, we used liquid chromatography-quadrupole time-of-flight mass spectrometry. Various compounds, including phosphatidylcholine chlorohydrin and phosphatidylcholine hydroxide/epoxide, were detected. Oxidized phosphatidylcholines were mainly detectable upon reaction with low concentrations of sodium hypochlorite, whereas chlorinated phosphatidylcholines formed in the presence of higher concentrations. In human abscesses, oxidized phosphatidylcholines were detected in the cases with high procalcitonin concentration, whereas chlorinated phosphatidylcholines were undetected. The detections of oxidized phosphatidylcholines in human tissues might indicate previous exposure to hypochlorous acid in septic cases. Our results provide insight into the mechanisms underlying pathogen survival following inflammation associated with neutrophil activation and topical myeloperoxidase release and show postmortem biomarkers candidates for sepsis.
Read full abstract