Short tandem repeats (STRs) are the preferred genetic markers in forensic DNA analysis, routinely measured by capillary electrophoresis (CE) method based on the fragment length features. While, the massive parallel sequencing (MPS) technology could simultaneously target a large number of intriguing forensic STRs, bypassing the intrinsic limitations of amplicon size separation and accessible fluorophores in CE, which is efficient and promising for enabling the identification of forensic biological evidence. Here, we developed a novel MPS-based Forensic Analysis System Multiplecues SetB Kit of 133-plex forensic STR markers (52 STRs and 81 Y-STRs) and one Y-InDel (M175) based on multiplex PCR and single-end 400bp sequencing strategy. This panel was subjected to developmental validation studies according to the SWGDAM Validation Guidelines. Approximately 2185 MPS-based reactions using 6 human DNA standards and 8 male donors were conducted for substrate studies (filter paper, gauze, cotton swab, four different types of FTA cards, peripheral venous blood, saliva, and exfoliated cells), sensitivity studies (from 2ng down to 0.0625ng), mixture studies (two-person DNA mixtures), PCR inhibitor studies (seven commonly encountered PCR inhibitors), species specificity studies (11 non-human species), and repeatability studies. Results of concordance studies (413 Han males and 6 human DNA standards) generated by STRait Razor and in-house Python scripts indicated 99.98% concordance rate in STR calling relative to CE for STRs between 41,900 genotypes at 100 STR markers. Moreover, the limitations of present studies, the nomenclature rules and forensic MPS applications were also described. In conclusion, the validation studies based on ~ 2200 MPS-based and ~ 2500 CE-based DNA profiles demonstrated that the novel MPS-based panel meets forensic DNA quality assurance guidelines with robust, reliable, and reproducible performance on samples of various quantities and qualities, and the STR nomenclature rules should be further regulated to integrate the inconformity between MPS-based and CE-based methods.
Read full abstract