The discharge of dyes in industrial wastewater poses significant environmental and health risks when released into natural water resources. In this study, we report the development of an EDTA-crosslinked cyclodextrin polymer (ECDP)-based sensor for the real-time, naked-eye detection of hazardous methylene blue (MB) dye in aqueous solutions and natural water samples. The sensor functions via a competitive host–guest inclusion mechanism involving sodium dodecyl sulphate (SDS) and ECDP, which modulates the alignment of liquid crystals (LCs). Initially, SDS induces homeotropic ordering at the fluid interface, but when complexed with ECDP, it causes a tilted LC alignment. Upon the introduction of MB, SDS is displaced from the ECDP cavity and re-adsorbs at the LC/aqueous interface, triggering an orientational transition from tilted to homeotropic. This transition is clearly observed as a distinct bright-to-dark shift under crossed polarizers. The host–guest (ECDP/MB) inclusion complexation mechanism was further confirmed by FT-IR, XRPD, and DSC analyses. The developed sensor exhibits high selectivity for MB in dye-contaminated natural water samples and sensitivity to MB concentrations upto 0.10 mM. This study demonstrates the potential of cyclodextrin-based polymers for liquid crystal sensing applications, offering promising pathways for future developments in environmental monitoring.
Read full abstract