The seismic performance of a structure with hysteretic energy dissipation devices (HEDDs) is significantly influenced by their cyclic structural characteristics. This is due to the fact that the acceleration and displacement responses of the structure mainly depend on the dissipating capacities of HEDDs. Hence, it is important to verify the cyclic characteristics of the HEDDs in designing the structure. Recognizing this importance, a current ASCE/SEI 7 requires prototype tests of energy dissipating systems that consist of HEDDs and their connecting components with a seismic-force-resisting system. The codified requirements for the prototype tests prescribe the acceptance criteria of energy dissipating systems, so called as a 15 percent rule. However, there is little information on the reliability of such acceptance criteria. As a part of research efforts to figure out this problem, this paper carries out sensitivity analysis of the seismic responses of steel moment-resisting frames influenced by the cyclic characteristics of damping systems employing HEDDs. Throughout the sensitivity analyses using probabilistic approaches, this study numerically assesses the influence of HEDD’s cyclic characteristics on the seismic response of steel moment-resisting frames. The analysis results show that the change of HEDD’s design parameters significantly affects the seismic response and of the HEDD’s design parameters, the initial stiffness and yield strength are the most influential parameters. Furthermore, the variation of the important structural engineering parameters is similar to or smaller than 10% of their mean values if all design parameters of HEDDs are satisfied with the prototype testing requirements prescribed in ASCE/SEI 7.
Read full abstract