One of the treatments for breast cancer is surgical resection of the tumour and prevention of recurrence with postoperative radiotherapy. Unfortunately, radiotherapy is not always effective enough due to the low sensitivity of cancer cells to ionising radiation. This study aimed to evaluate the radiosensitising properties of resveratrol, piceatannol and polydatin on breast cancer cells, which differ in the presence of hormonal receptors on their surface. The experimental part was carried out on triple-negative breast cancer cells (HCC38) and hormone-dependent cells (MCF7). The study assessed the level of cell death, changes in the expression of genes (BAX, BCL-2) and proteins related to the apoptosis process (CASPASE 3, 8 and P53), changes in the expression of antioxidant enzymes (CATALASE, SOD, GPx1/2) and NRF-2. Additionally, the expression level of RAD51 protein and histone H2AX, which are involved in DNA repair processes, was assessed. Statistical significance was evaluated by a two-way analysis of variance (ANOVA) followed by Tukey's post hoc test (p < 0.05). Ionising radiation in combination with resveratrol or piceatannol activates the apoptosis process by internal and external pathways. Greater sensitivity of MCF7 cells compared to HCC38 cells to ionising radiation in combination with resveratrol is associated with a weaker antioxidant response of cells and reduced intensity of DNA damage repair. DNA repair induced by ionising radiation occurs more effectively in HCC38 cells than in MCF7 cells. Resveratrol has the highest radiosensitising potential among the tested stilbene for cells of both lines. The effectiveness of ionizing radiation in combination with resveratrol (to a lesser extent with piceatannol) is more significant in MCF7 than in HCC38 cells.
Read full abstract