We studied experimentally and theoretically the substrate-orientation impact on carrier transport and capture in InGaN multiple quantum well (MQW) laser diodes (LDs) with emission in the aquamarine-green spectral range. A new simulation approach was developed to analyze this behavior of LEDs and LDs emitting at these wavelengths. We show that due to deep carrier confinement, the thermal escape from a QW in such devices is negligible. The carrier distribution among QWs is therefore determined by the carrier transport and capture rates. We also show that the ballistic transport mechanism is dominant in this type of MQW active region. In c-plane structures, this mechanism is tunneling-assisted, and therefore, the transport is much slower than in nonpolar and semipolar structures. Because of this, a strong carrier injection nonuniformity observed in c-plane LDs, causes the threshold current increase when number of QWs is >;2. This effect is not observed in semipolar LDs because the carrier transport rate is faster than the capture rate.
Read full abstract