This article presents the results of a field experiment investigating the energy efficiency of grain produced by a semi-dwarf genotype of winter triticale at different levels of agricultural inputs. The energy efficiency of winter triticale grain production was evaluated in two low-input and two high-input cultivation practices that differed in the rate of nitrogen fertilizer (split application) and disease control. The energy inputs associated with the production of winter triticale grain at low levels of agricultural inputs were determined to be 14.5 to 14.7 GJ ha−1. Higher levels of agricultural inputs increased the demand for energy in grain production by 25% on average. The energy output of grain peaked (163.3 GJ ha−1) in response to a fertilizer rate of 120 kg ha−1 applied in a split ratio of 50:50 (BBCH 27/32) and two fungicide treatments (BBCH 31 and 39). The energy output of grain from the remaining cultivation regimes was 3–13% lower. The energy efficiency ratio was highest in the low-input cultivation regime with a nitrogen rate of 90 kg ha−1 split into two applications (60 and 30 kg ha−1 for BBCH 27 and 32, respectively), seed dressing with fungicide (thiram and tebuconazole) and one fungicide treatment (azoxystrobin) (BBCH 39).
Read full abstract