In recent years, there has been a growing demand to stylize a given 3D scene to align with the artistic style of reference images for creative purposes. While 3D Gaussian Splatting (GS) has emerged as a promising and efficient method for realistic 3D scene modeling, there remains a challenge in adapting it to stylize 3D GS to match with multiple styles through automatic local style transfer or manual designation, while maintaining memory efficiency for stylization training. In this paper, we introduce a novel 3D GS stylization solution termed Multi-StyleGS to tackle these challenges. In particular, we employ a bipartite matching mechanism to automatically identify correspondences between the style images and the local regions of the rendered images. To facilitate local style transfer, we introduce a novel semantic style loss function that employs a segmentation network to apply distinct styles to various objects of the scene and propose a local-global feature matching to enhance the multi-view consistency. Furthermore, this technique can achieve memory-efficient training, more texture details and better color match. To better assign a robust semantic label to each Gaussian, we propose several techniques to regularize the segmentation network. As demonstrated by our comprehensive experiments, our approach outperforms existing ones in producing plausible stylization results and offering flexible editing.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
98 Articles
Published in last 50 years
Articles published on Style Of Semantics
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
97 Search results
Sort by Recency