In this paper a full approach of modeling and intelligent control of a four rotor unmanned air vehicle (UAV) known as quad-rotor aircraft is presented. In fact, a PID on-line optimized Neural Networks Approach (PID-NN) is developed to be applied to angular trajectories control of a quad-rotor. Whereas, PID classical controllers are dedicated for the positions, altitude and speed control. The goal of this work is to concept a smart Self-Tuning PID controller, for attitude angles control, based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking a desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind modeled and applied to the overall system. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regards to decision making facing disturbances. This technique offers some advantages over conventional control methods such as PID controller. Simulation results are founded on a comparative study between PID and PID-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior and stability. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, the proposed controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient face to turbulences in the form of wind disturbances.
Read full abstract