The equations for the general Darboux–Halphen system obtained as a reduction of the self-dual Yang–Mills can be transformed to a third-order system which resembles the classical Darboux–Halphen system with a common additive terms. It is shown that the transformed system can be further reduced to a constrained non-autonomous, non-homogeneous dynamical system. This dynamical system becomes homogeneous for the classical Darboux–Halphen case, and was studied in the context of self-dual Einstein's equations for Bianchi IX metrics. A Lax pair and Hamiltonian for this reduced system is derived and the solutions for the system are prescribed in terms of hypergeometric functions.
Read full abstract