In this work, we describe application of a high-sensitive electrochemical sensor for determination of ascorbic acid (AA) in the presence of high concentration of Sudan I in food samples. In the first step, we study synthesis and characterization of NiO/NPs with X-ray diffraction (XRD) method. In the second step, application of NiO/NPs describe in the preparation of carbon-paste electrode modified with (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1,2-diol (DEDED) as a high-sensitive and selective voltammetric sensor for determination of AA and Sudan I. The electrocatalytic oxidation of AA at the modified electrode was investigated by cyclic voltammetry, chronoamperometry and square wave voltammetry (SWV). For the mixture containing AA and Sudan I, the peaks potential was well separated from each other. Their square wave voltammetrics peaks current increased linearly with their concentration at the ranges of 0.01–600 and 0.5–1,000 μM, with the detection limits of 0.006 and 0.2 μM, respectively. Finally, the proposed method was also examined as a selective, simple, and precise electrochemical sensor for the determination of AA and Sudan I in real samples such as fruit juices, fresh vegetable juice, chilli sauce and tomato sauce.
Read full abstract