In the past few decades, 3D-printed dental implants have been manufactured, and significant studies have demonstrated the pre-clinical validation of such systems. However, studies have yet to tackle the ever-present issue of preventing the jumping gap to enhance overall outcomes. The present study details the utilization of patient computed tomography (CT) data to design and subsequently fabricate a multi-component customized dental implant assembly and customized instruments using direct metal laser sintering (DMLS) technology. The workflow was validated for two patient data sets (cases 1 and 2), which were used to render and print custom implant assemblies; the simulation data for these were compared with a commercially available solution. The present study incorporated a prototype stage as well as subjecting the customized implant assemblies to both static (Case 1: 38.889-77.815 MPa vs 75.47-158.09 MPa; Case 2: 83.947-106.65 MPa vs 55.225-126.57 MPa) and dynamic finite element analysis (Case 1: 41.076-84.09 MPa vs 75.448-187.91 MPa; Case 2: 106.81-108.7 MPa vs 79.176-135.48 MPa) along with resonance frequency analysis (Case 1: 7763.2 Hz vs 7003.6 Hz; Case 2: 7910.1 Hz vs 7102.1 Hz) as well as residual stress analysis. The assembly's stress patterns and resonance frequencies were evaluated against a commercially available implant system. It was observed that the customized implant assemblies tended to outperform the commercially available solution in most simulated scenarios.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
5741 Articles
Published in last 50 years
Articles published on Laser Sintering
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
5431 Search results
Sort by Recency