Direct oxidation of methane to valuable oxygenates like alcohols and acetic acid under mild conditions poses a significant challenge due to high C‒H bond dissociation energy, facile overoxidation to CO and CO2 and the intricacy of C−H activation/C−C coupling. In this work, we develop a multifunctional iron(III) dihydroxyl catalytic species immobilized within a metal-organic framework (MOF) for selective methane oxidation into methanol or acetic acid at different reaction conditions using O2. The active-site isolation of monomeric FeIII(OH)2 species at the MOF nodes, their confinement within the porous framework, and their electron-deficient nature facilitate chemoselective C‒H oxidation, yielding methanol or acetic acid with high productivities of 38,592μmolCH3OHgFe−1h−1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$38,592\\,\\upmu {{{\\rm{mol}}}}_{{{{\\rm{CH}}}}_{3}{{\\rm{OH}}}}{{{{\\rm{g}}}}_{{{\\rm{Fe}}}}}^{-1}{{{\\rm{h}}}}^{-1}$$\\end{document} and 81,043μmolCH3CO2HgFe−1h−1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$81,043\\,\\upmu {{{\\rm{mol}}}}_{{{{\\rm{CH}}}}_{3}{{{\\rm{CO}}}}_{2}{{\\rm{H}}}}{{{{\\rm{g}}}}_{{{\\rm{Fe}}}}}^{-1}{{{\\rm{h}}}}^{-1}$$\\end{document}, respectively. Experiments and theoretical calculations suggest that methanol formation occurs via a FeIII-FeI-FeIII catalytic cycle, whereas CH3CO2H is produced via hydrocarboxylation of in-situ generated CH3OH with CO2 and H2, and direct CH4 carboxylation with CO2.
Read full abstract