As part of the Lower Rhein Embayment (LRE), the Southern Erft block is characterized by a complex tectonic setting that influences hydrological and geological conditions on a local as well as regional level. The study area is located in the south of North Rhine-Westphalia and traversed by several NW-SE-oriented fault structures. Since the tectonic structures were located by past studies based on a sparse foundation of geological data, the positions include considerable uncertainties. Therefore, it was decided to re-evaluate and refine the assumed fault locations by conducting geophysical measurements. Seismic Refraction Tomography (SRT) as well as Electrical Resistivity Tomography (ERT) was performed along seven measurement profiles with a length of up to 1.1 km. In addition to compiling individual resistivity and velocity models for all deduced measurements, ERT and SRT datasets were cooperatively inverted using the Structurally Coupled Cooperative Inversion (SCCI). This algorithm strengthens structural similarities between velocity and resistivity by adapting the individual regularizations after each model iteration. Previously assumed locations of the tectonic structures diverge from the new evidence based on ERT and SRT surveys. Especially in the western and eastern parts of the research area, differences between the survey results and formerly assumed locations are in the order of 100 m. Seismic and geoelectric measurements further indicate a fault structure in the southern part of the area, which remained undetected by past studies. The cooperative inversions do not improve the geophysical models qualitatively, since the individually inverted datasets already provide results of good quality and resolution.
Read full abstract