Monte Carlo simulations are used to study the behavior of two polymers under confinement in a cylindrical tube. Each polymer is modeled as a chain of hard spheres. We measure the free energy of the system, F, as a function of the distance between the centers of mass of the polymers, λ, and examine the effects on the free energy functions of varying the channel diameter D and length L, as well as the polymer length N and bending rigidity κ. For infinitely long cylinders, F is a maximum at λ = 0, and decreases with λ until the polymers are no longer in contact. For flexible chains (κ = 0), the polymers overlap along the cylinder for low λ, while above some critical value of λ they are longitudinally compressed and non-overlapping while still in contact. We find that the free energy barrier height, ΔF ≡ F(0) - F(∞), scales as ΔF/k(B)T ∼ ND(-1.93 ± 0.01), for N ⩽ 200 and D ⩽ 9σ, where σ is the monomer diameter. In addition, the overlap free energy appears to scale as F/k(B)T = Nf(λ/N; D) for sufficiently large N, where f is a function parameterized by the cylinder diameter D. For channels of finite length, the free energy barrier height increases with increasing confinement aspect ratio L/D at fixed volume fraction ϕ, and it decreases with increasing ϕ at fixed L/D. Increasing the polymer bending rigidity κ monotonically reduces the overlap free energy. For strongly confined systems, where the chain persistence length P satisfies D ≪ P, F varies linearly with λ with a slope that scales as F'(λ) ∼ -k(B)TD(-β)P(-α), where β ≈ 2 and α ≈ 0.37 for N = 200 chains. These exponent values deviate slightly from those predicted using a simple model, possibly due to insufficiently satisfying the conditions defining the Odijk regime. Finally, we use Monte Carlo dynamics simulations to examine polymer segregation dynamics for fully flexible chains and observe segregation rates that decrease with decreasing entropic force magnitude, f ≡ |dF/dλ|. For both infinite-length and finite-length channels, the polymers are not conformationally relaxed at later times during segregation.
Read full abstract