While extensive research has explored the effects of plastic pollution, ecosystem responses remain poorly quantified, especially in field experiments. In this study, we investigated the impact of polyester pollution, a prevalent plastic type, on coastal sediment ecosystem function. Strips of polyester netting were buried into intertidal sediments, and effects on sediment oxygen consumption and polyester additive concentrations were monitored over 72-days. Our results revealed a rapid reduction in the magnitude and variability of sediment oxygen consumption, a crucial ecosystem process, potentially attributed to the loss of the additive di(2-ethylhexyl) phthalate (DEHP) from the polyester material. DEHP concentrations declined by 89% within the first seven days of deployment. However, effects on SOC dissipated after 22 days, indicating a short-term impact and a quick recovery by the ecosystem. Our study provides critical insights into the immediate consequences of plastic pollution on ecosystem metabolism in coastal sediments, contributing to a nuanced understanding of the temporal variation of plastic pollution’s multifaceted impacts. Additionally, our research sheds light on the urgent need for comprehensive mitigation strategies to preserve marine ecosystem functionality from plastic pollution impacts.
Read full abstract