We investigate the modeling and simulation of ionic transport and charge conservation in lithium-ion batteries (LIBs) at the microscale. It is a multiphysics problem that involves a wide range of time scales. The associated computational challenges motivate the investigation of numerical techniques that can decouple the time integration of the governing equations in the liquid electrolyte and the solid phase (active materials and current collectors). First, it is shown that semi-discretization in space of the non-dimensionalized governing equations leads to a system of index-1 semi-explicit differential algebraic equations (DAEs). Then, a new generation of strategies for multi-domain integration is presented, enabling high-order adaptive coupling of both domains in time, with efficient and potentially different domain integrators. They reach a high level of flexibility for real applications, beyond the limitations of multirate methods. A simple 1D LIB half-cell code is implemented as a demonstrator of the new strategy for the simulation of different modes of cell operation. The integration of the decoupled subsystems is performed with high-order accurate implicit nonlinear solvers. The accuracy of the space discretization is assessed by comparing the numerical results to the analytical solutions. Then, temporal convergence studies demonstrate the accuracy of the new multi-domain coupling approach. Finally, the accuracy and computational efficiency of the adaptive coupling strategy are discussed in the light of the conditioning of the decoupled subproblems compared to the one of the fully-coupled problem. This new approach will constitute a key ingredient for the high-fidelity 3D LIB simulations based on actual electrode microstructures.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
3774 Articles
Published in last 50 years
Articles published on Simulation Scheme
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
3727 Search results
Sort by Recency