The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM’s feasibility for photocatalytic processes. Consequently, the effectiveness of different advanced processes such as using solar light with the NIM (Light–NIM) and solar light with the NIM and H2O2 (Light–NIM–H2O2) to reduce AA was evaluated. The NIM acts as a semiconductor under solar light, effectively degrading enrofloxacin (ENR) and reducing its AA, although complete elimination was not achieved. The addition of hydrogen peroxide (NIM–Light–H2O2) enhanced the generation of reactive oxygen species (ROS), thereby increasing the elimination of ENR and AA. The role of ROS, specifically O2•− and HO●, in the degradation of enrofloxacin was distinguished using scavenger species and electron paramagnetic resonance (EPR) analysis. Additionally, the five primary degradation products generated during the advanced processes were elucidated. Furthermore, the relationship between the structure of these products and the persistence or elimination of AA, which was differentiated against E. coli but not against S. aureus, was discussed. The effects of the matrix during the process and the extent of the treatments, including their capacity to promote disinfection, were also studied. The reusability of the natural iron material was examined, and it was found that the NIM–Light–H2O2 system showed an effective reduction of 5 logarithmic units in microbiological contamination in an EWWTP and can be reused for up to three cycles while maintaining 100% efficiency in reducing AA.
Read full abstract