Natural damming of rivers by mass movements is a very common and potentially dangerous phenomena which has been documented all over the world. In this paper, a two-layer model of Savage-Hutter type is presented to simulate the dynamic procedure for the intrusion of landslide into rivers. The two-layer shallow water system is derived by depth averaging the incompressible Navier-Stokes equations with the hydrostatic assumption. A high order accuracy scheme based on the finite volume method is proposed to solve the presented model equations. Several numerical tests are performed to verify the realiability and feasibility of the proposed model. The numerical results indicate that the proposed method can be competent for simulating the dynamic process of landslide intrusion into the river. The interaction effect between both layers has a significant impact on the landslide movement, water fluctuation and wave propagation.
Read full abstract