Dynamic Green's function plays an important role in the study of various wave radiation, scattering and soil-structure interaction problems. However, little research has been done on the response of transversely isotropic saturated layered media. In this paper, the 3D dynamic responses of a multi-layered transversely isotropic saturated half-space subjected to concentrated forces and pore pressure are investigated. First, utilizing Fourier expansion in circumferential direction accompanied by Hankel integral transform in radial direction, the wave equations for transversely isotropic saturated medium in cylindrical coordinate system are solved. Next, with the aid of the exact dynamic stiffness matrix for in-plane and out-of-plane motions, the solutions for multi-layered transversely isotropic saturated half-space under concentrated forces and pore pressure are obtained by direct stiffness method. A FORTRAN computer code is developed to achieve numerical evaluation of the proposed method, and its accuracy is validated through comparison with existing solutions that are special cases of the more general problems addressed. In addition, selected numerical results for a homogeneous and a layered material model are performed to illustrate the effects of material anisotropy, load frequency, drainage condition and layering on the dynamic responses. The presented solutions form a complete set of Green's functions for concentrated forces (including horizontal load in x(y)-direction, vertical load in z-direction) as well as pore pressure, which lays the foundation for further exploring wave propagation of complex local site in a layered transversely isotropic saturated half-space by using the BEMs.
Read full abstract