Particulate fluxes of trace elements (Al, Cd, Co, Cu, Fe, Mn, Ni, P, Ti, V and Zn) in the northeast Atlantic Ocean (three positions at latitudes from 33°N to 54°N along ∼20°W) were measured using time-series sediment traps between March 1992 and September 1994. Significant variabilities of fluxes with season and depth (1000 m to maximum of 4000 m) were observed only for ‘biogenic elements’, such as Cd, Ni, Zn or P. On the other hand, we found a distinct large-scale increase of fluxes into the deep-sea traps to the south for Al, Co, Fe, Mn and V. We attribute this latitudinal gradient to the increasing influence of the Saharan dust plume. The biogenic flux decreased towards the south. This trend was clearly visible for Cd and P only. The fluxes of other ‘nutrient-like’ elements, such as Ni or Zn, exhibited a general decrease between 53°N and 33°N. We compared our sedimentation flux data with published data from the western North Atlantic basins. For this purpose we corrected the deep-sea fluxes of Cu, Mn, Ni and Zn for their lithogenic fractions on the basis of Al, with average crustal material and granitic rocks as references. The comparison indicates that these ‘excess’ fluxes are a factor of at least 2 higher in the western basins for the selected elements. Estimated fluxes are in good agreement with reported atmospheric deposition in the two areas. The noted imbalance between the non-lithogenic atmospheric input of Mn and the determined ‘excess flux’ in the deep northeast Atlantic indicates an additional input in the form of a lateral flux of dissolved Mn(II) species and scavenging onto sinking particles. With respect to the mechanism of sedimentation, a unique behaviour is noticed for the refractory elements Co, Fe, Mn, Ti and V, which were found to correlate with the vertical transport of Al (clay). The ‘excess’ fluxes of Cu, Ni and Zn are linearly related to C org, whereas the overall relation of Cd to P fluxes exhibits a molar Cd/P ratio of 2.0×10 -4, which is close to the ratio in the dissolved fractions in the northeast Atlantic.
Read full abstract