To simulate debris flow run-out, the governing equations for free-surface shallow flow are corrected by setting the basal flow resistance coefficients with the quadratic rheological friction model. A well-balanced numerical scheme is developed for its run-out simulation over irregular topography. A linear reconstruction is adopted for improving the spatial accuracy of the numerical scheme. Considering the complex friction terms of governing equations of debris flow, they are estimated with a full implicit scheme for ensuring stability of the numerical scheme. The validity check of run-out simulation is implemented based on general knowledge of fluid, and a well-studied case occurred in the Xiezi Gully in Yingxiu Town, Sichuan Province of China. For practical purpose, the present numerical scheme is used for run-out prediction of debris flow in Xiaojia Gully of Panzhihua City, Sichuan Province of China. Our work aims to present a well-balanced numerical scheme for debris flow run-out simulation prediction, which can be applied quite conveniently to solve other kinds of debris flow models and helpful to promote the development in debris flow numerical calculation.
Read full abstract