Silicon steel (electrical steel) has been used in electric motors that are important components in sustainable new energy Electrical Vehicles (EVs). The Ruhrstahl–Heraeus process is commonly used in the refining process of silicon steel. The refining effect inside the RH degasser is closely related to the flow and mixing of molten steel. In this study, a 260 t RH was used as the prototype, and the transport process of the passive scalar tracer (virtual tracer) and salt tracer (considering density effect) was studied using numerical simulation and water model research methods. The results indicate that the tracer transports from the up snorkel of the down snorkel to the bottom of the ladle, and then upwards from the bottom of the ladle to the top of the ladle. Density and gravity, respectively, play a promoting and hindering role in these two stages. In different areas of the ladle, density and gravity play a different degree of promotion and obstruction. Moreover, in different regions of the ladle, the different circulation strength leads to the different promotion degrees and obstruction degrees of the density. This results in the difference between the concentration growth rate of the salt tracer and the passive scalar in different regions of the ladle top. From the perspective of mixing time, density and gravity have no effect on the mixing time at the bottom of the ladle, and the difference between the passive scalar and NaCl solution tracer is within the range of 1–5%. For a larger dosage of tracer case, the difference range is reduced. However, at the top of the ladle, the average mixing time for the NaCl solution case is significantly longer than that of the passive scalar case, within the range of 3–14.7%. For a larger dosage of tracer case, the difference range is increased to 17.4–41.1%. It indicates that density and gravity delay the mixing of substances at the top area of the ladle, and this should be paid more attention when adding denser alloys in RH degasser.
Read full abstract