The increasing volume of municipal solid waste (MSW) worldwide presents significant environmental challenges, necessitating the development of efficient waste-to-energy (WtE) solutions. Among various thermochemical methods, gasification offers a promising approach for converting MSW into syngas, which can be utilized for energy generation. This study investigates the gasification characteristics of MSW in a pilot-scale reciprocating moving-grate furnace, focusing on the effect of key operating parameters such as equivalence ratio (ER), gasification temperature, and gasifying agent-staged ratio on gasification characteristics.Seven experimental schemes were tested with varying lower heating values (LHV) of MSW (ranging from 6.98 to 15.1 MJ/kg) and throughputs (ranging from 0.77 to 1.67 tons per day) to assess the adaptability and stability of the moving-grate system under different conditions. The results indicate that an ER between 0.6 and 0.7, a gasification temperature of 760 °C, and a gasifying agent-staged ratio of 7:3 are optimal for achieving a maximum energy conversion efficiency of 71.6 %. It was observed that the LHV of syngas decreases when the gasification temperature exceeds 850 °C due to increased oxidation of light hydrocarbons. Moreover, the study highlights the influence of grate moving speed on residence time and reaction completeness, which are critical for optimizing syngas yield and quality.The findings demonstrate that while the maximum energy conversion efficiency of the moving-grate system is lower than other reactor types, its lower capital and operating costs, due to the lack of dedicated feedstock pretreatment, make it a viable option for small-scale and pilot-scale applications. This study provides valuable insights into optimizing MSW gasification processes and underscores the potential of the moving-grate furnace for adaptable and cost-effective WtE applications. The novelty of this work lies in the comprehensive evaluation of the moving-grate gasification process under varied operating conditions, providing a foundation for future research on improving efficiency and reducing environmental impact in large-scale MSW management.
Read full abstract