Guidance munition has become one of the popular subjects in both the theoretical and applicable studies since they could find a wide field of use in recent years because of their high performance and lower collateral damage capabilities as per the improving defence concept. The use of smaller and lighter guided munition makes the stated advantages increase without relinquishing the effectiveness. In this study, the design of a guidance kit which makes the mortar projectiles become guided when released from aerial platforms and the relevant computer simulations performed upon a selected projectile model are investigated. Here, two different configurations are considered based on the rotational degree of freedom of a pair of fins mounted on a rotary ring. In the simulations in which it is assumed that the guided projectile is released from an unmanned aerial vehicle, the different values of the fin deflection, autopilot switching duration, and side wind are considered for both of the mentioned geometries. Finally, the final miss distance and time of flight values obtained for all the designated cases are compared.
Read full abstract