Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often leading to the bioavailability of metabolically important mineral elements such as nitrogen (N), phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant growth promotion include mycorrhizal fungi, associative diazotrophs, and the N2-fixing rhizobia belonging to the α, β and γ class of Proteobacteria. Mycorrhizal fungi generally contribute to increasing the surface area of soil-root interface for optimum nutrient uptake by plants. However, when transformed into bacteroids inside root nodules, rhizobia also convert N2 gas in air into ammonia for use by the bacteria and their host plant. Thus, nodulated legumes can meet a high proportion of their N requirements from N2 fixation. The percentage of legume N derived from atmospheric N2 fixation varies with crop species and genotype, with reported values ranging from 50-97%, 24-67%, 66-86% 27-92%, 50-92%, and 40-75% for soybean (Gycine max), groundnut (Arachis hypogea), mung bean (Vigna radiata), pigeon pea (Cajanus cajan), cowpea (Vigna unguiculata), and Kersting's groundnut (Macrotyloma geocarpum), respectively. This suggests that N2-fixing legumes require little or no N fertilizer for growth and grain yield when grown under field conditions. Even cereals and other species obtain a substantial proportion of their N nutrition from associative and endophytic N2-fixing bacteria. For example, about 12-33% of maize N requirement can be obtained from their association with Pseudomonas, Hebaspirillum, Azospirillum, and Brevundioronas, while cucumber can obtain 12.9-20.9% from its interaction with Paenebacillus beijingensis BJ-18. Exploiting the plant growth-promoting traits of soil microbes for increased crop productivity without any negative impact on the environment is the basis of green agriculture which is done through the use of biofertilizers. Either alone or in combination with other synergistic rhizobacteria, rhizobia and arbuscular mycorrhizal (AM) fungi have been widely used in agriculture, often increasing crop yields but with occasional failures due to the use of poor-quality inoculants, and wrong application techniques. This review explores the literature regarding the plant growth-promoting traits of soil microbes, and also highlights the bottle-necks in tapping this potential for sustainable agriculture.
Read full abstract