PurposeIt is crucial to find a better portfolio optimization strategy, considering the cryptocurrencies' asymmetric volatilities. Hence, this research aimed to present dynamic optimization on minimum variance (MVP), equal risk contribution (ERC) and most diversified portfolio (MDP).Design/methodology/approachThis study applied dynamic covariances from multivariate GARCH(1,1) with Student’s-t-distribution. This research also constructed static optimization from the conventional MVP, ERC and MDP as comparison. Moreover, the optimization involved transaction cost and out-of-sample analysis from the rolling windows method. The sample consisted of ten significant cryptocurrencies.FindingsDynamic optimization enhanced risk-adjusted return. Moreover, dynamic MDP and ERC could win the naïve strategy (1/N) under various estimation windows, and forecast lengths when the transaction cost ranging from 10 bps to 50 bps. The researcher also used another researcher's sample as a robustness test. Findings showed that dynamic optimization (MDP and ERC) outperformed the benchmark.Practical implicationsSophisticated investors may use the dynamic ERC and MDP to optimize cryptocurrencies portfolio.Originality/valueTo the best of the author’s knowledge, this is the first paper that studies the dynamic optimization on MVP, ERC and MDP using DCC and ADCC-GARCH with multivariate-t-distribution and rolling windows method.
Read full abstract