This paper describes the different regions of the Malpighian tubules and the associated structures (ampulla, midgut, ileum) in the cockroach, Periplaneta americana. There are about 150 tubules in each insect. Each tubule consists of at least three parts. The short distal region is thinner than the other parts and is highly contractile. The middle region comprises most of the tubule length and is composed of primary and stellate cells. Primary cells contain numerous refractile mineral concretions, while stellate cells have smaller nuclei, fewer organelles, simpler brush border, and numerous multivesicular bodies. Symbiont protozoa are sometimes present within the lumen of the middle region near where it opens into the proximal region of the tubule. The latter is a short region that drains the tubular fluid into one of the six ampullae. These are contractile diverticula of the intestine located at the midgut-hindgut junction. The ampulla is highly contractile, and consists of a layer of epithelial cells surrounding a cavity that opens into the gut via a narrow slit lined by cells of unusual morphology. The proximal region of the tubule and the ampulla resemble the midgut in that they have similar micromal origin and reabsorptive function for the proximal region of the tubule and for the ampulla. A number of inclusions found within the tubule cells are described, including peroxisomes and modified mitochondria. Current theories of fluid transport are evaluated with regard to physiological and morphological characteristics of Malpighian tubules. The possible role of long narrow channels such as those between microvilli and within basal folds is considered, as is the mechanism by which these structures are formed and maintained. Also discussed is the role of peroxisomes and symbionts in the excretory process.
Read full abstract