Inflammatory bowel disease (IBD) is characterized by very severe intestinal inflammation associated with extra-intestinal manifestations. One of the most critical ones is bone destruction, which remains a major cause of morbidity and a risk factor for osteopenia and osteoporosis in IBD patients. In various mouse models of IBD, we and other have demonstrated concomitant bone loss due to a significant increase in osteoclast activity. Besides bone resorption, osteoclasts are known to control hematopoietic niches in vivo and modulate inflammatory responses in vitro, suggesting they may participate in chronic inflammation in vivo. Here, using different models of colitis, we showed that osteoclast inhibition significantly reduced disease severity and that induction of osteoclast differentiation by RANKL contributed to disease worsening. Our results demonstrate a direct link between osteoclast activity and myeloid cell accumulation in the intestine during colitis. RNAseq analysis of osteoclasts from colitic mice revealed overexpression of genes involved in the remodeling of hematopoietic stem cell niches. We also demonstrated that osteoclasts induced hematopoietic progenitor proliferation accompanied by a myeloid skewing in the early phases of colitis, which was confirmed in a model of RANKL-induced osteoclastogenesis. Mechanistically, inhibition of TNF-α reduced the induction of myeloid skewing by OCL both in vitro and in vivo. Lastly, we observed that osteoclastic activity and the proportion of myeloid cells in the blood are positively correlated in patients with Crohn’s disease. Collectively, our results shed light on a new role of osteoclasts in colitis in vivo, demonstrating they exert their colitogenic activity through an early action on hematopoiesis, leading to an increase in myelopoiesis sustaining gut inflammation.
Read full abstract