SUMMARY The Permian age Chiapas Massif in southeast Mexico is locally host to well-exposed pseudotachylyte vein networks. The veins are black to dark grey and aphanitic in appearance, and consist mostly of microbreccia of angular fragments of plagioclase, K-feldspar, biotite and quartz, in a cryptocrystalline (microscopically irresolvable) matrix. Evidence of melting is present in the form of glass seams, dikelets, glass clasts included in cataclasite and a distinct chemistry in the pseudotachylite veins; pristine glass represents a relatively small volume of the pseudotachylite veins. At an exposure along the Tablon River valley, where the host rock is a medium to coarse-grained equigranular quartz diorite, individual veins are consistently oriented about 280°, are up to 16 mm wide, tens of cm apart, display a consistent left-lateral offset and can be traced for several metres. Individual pseudotachylyte veins rarely cross each other, and they cannot be directly linked to a regional-scale fault. Pseudotachylytes are apparently formed by a combination of crushing, comminution and frictional melting, but they are cataclasite dominated. Textures indicate that cataclasis continued after frictional melting had ceased. A 40Ar/39Ar age determination from whole rock chips of one vein shows a climbing Ar release spectrum with a date of ∼114 Ma as the most reliable age estimate for Ar retention. This result is interpreted in the context of pseudotachylyte formation, recrystallization and resetting of K-bearing minerals for the K–Ar system in the late Early Cretaceous. Ten veins were sampled for palaeomagnetic and magnetic fabric studies, with samples collected from both the veins and their host rock. Remanence data give moderate natural remanent magnetization (NRM) intensities for both the veins (e.g. NRM mean 6.6 × 10−3 A m−1; σ= 5.5) and host rock (mean 7.7 × 10−3 A m−1; σ= 10.8). Many samples of host rock yield an ill-defined east–west directed and shallow magnetization, which we interpret as a Late Permian magnetization based on previous studies of the Chiapas Massif. This magnetization resides in haematite. Veins, as well as immediately adjacent host rock, typically have well-defined, single polarity magnetizations of north–northwest declination and moderate positive inclination and these resemble the Cretaceous expected field direction. The overall mean of the veins is of Dec = 348.7° and Inc = 33.6° (k= 30.5 and α95= 12.3°; n= 6 site means). Rock magnetic parameters suggest that the remanence in the veins principally resides in low-Ti pseudo-single domain magnetite and maghemite grains, but haematite, coarse-grained magnetite, rutile, Fe-Cr-Ni oxides and ilmenite are also present in the veins. Bulk magnetic susceptibility values range between ∼0.3 and 1.1 * 10−3 SI volume units, and host rock values do not differ significantly from vein values. The orientations of the principal susceptibility axes in the host rock and the veins are indistinguishable. In both, magnetic foliations are near vertical and are essentially parallel to the nearly east–west orientation of the veins. Nonetheless, host rock fabrics are predominantly prolate, whereas vein fabrics are oblate. The mean susceptibility tensors of host rocks and pseudotachylyte are characterized by P′/T values of 1.041/–0.327 and 1.033/+0.302, respectively. This result suggests that the fabric reflected by magnetic susceptibility anisotropy in the veins was formed under pure shear stress, during cooling of the veins. The lack of evidence of fabric rotation supports models that associate partial melt with viscous break during fault slip.
Read full abstract