With the combination of artificial intelligence and robotics technology, more and more professional robots are entering the public eye. Basketball robot competition, as a very good target system for autonomous robot research, is very suitable for conducting research on robot autonomous perception system object detection. However, traditional basketball robots have problems such as recognition difficulties, which seriously affect the recognition of robot targets and distance measurement based on recognition. To improve the performance of basketball robots in competitions, research was conducted to improve the object detection system. Firstly, a basketball robot object detection system based on robot operating system was designed. In the software layer of the object detection system, an algorithm that combines YOLOv5s and laser detection was used, and an appropriate instance batch normalization network module was introduced in the YOLOv5s algorithm to improve the model's generalization ability. The experiment outcomes indicated that the improved algorithm had intersection over union (IoU), structural information loss, ambiguity and signal-to-noise ratio of 0.96, 0.03, 0.13, and 0.98, respectively, and performed the best in the other comparison models. The recall curve area and F1 value of the improved algorithm were 0.95 and 0.9789, respectively. In the detection of basketball, volleyball, and calibration columns, the average classification accuracy of the improved model was 95.87%, and the average calibration box accuracy was 97.05%. From this, the algorithm proposed in the study has robust performance and can efficiently achieve object detection and recognition of basketball robots. The improved algorithm proposed in the study provides more reliable and rich information for the perception ability of basketball robots, as well as for their subsequent decision-making and action planning, thereby improving the overall technical level of the robots.
Read full abstract