This study investigates the effect of variable-temperature roasting on the flavor compounds of Xinjiang tannur-roasted mutton. Gas chromatography coupled with ion mobility spectroscopy (GC-IMS) was used to compare and analyze the volatile components and flavor fingerprints of Xinjiang tannur-roasted mutton using variable-temperature electrically heated air roasting (VTR), constant-temperature electrically heated air roasting (EHAR), and constant-burning charcoal roasting (BCR) techniques. The changes in fatty acids and free amino acids in Xinjiang tannur-roasted mutton under different roasting conditions were compared. By using GC-IMS analysis, 11 flavor compounds, including 4-methyl-3-penten-2-one, isoamyl propionate, trans-2-heptenal, trans-2-heptenal, 2-hexanone, n-hexanol, 2-hexenal, 2-ethylfuran, and ethyl 2-methylbutanoate, were identified as characteristic volatile compounds in the temperature-controlled electrothermal roasting of Xinjiang tannur-roasted mutton using the following conditions: 0-4 min, 300 °C; 5-10 min, 220 °C; and 11-17 min, 130 °C (VTR3). Through principal component analysis, it was found that the substances with the highest positive correlation with PC1 and PC2 were n-hexanol and 3-methylbutanol. The sensory evaluation showed that VTR3 had high acceptability (p < 0.05) and a fat flavor (p < 0.05). There was no significant difference in the total fatty acid (TFA) content between the VTR3 and burning charcoal roast for 1-17 min at 300 °C (BCR3) (p > 0.05), but it was lower than that in the other experimental groups (p < 0.05). The lowest proportion of glutamic acid content in VTR3 was 22.44%, and the total free amino acid content in the electric thermostatic roasting for the 1-17 min, 300 °C (EHAR3) group (347.05 mg/100 g) was significantly higher than that in the other experimental groups (p < 0.05). By using Spearman correlation analysis, the roasting loss rate showed a highly significant negative correlation with essential amino acids (EAAs), non-essential amino acids (NEAAs), and total free amino acids (TAAs) (the correlation coefficients (r) were 0.82, 0.87, and 0.87, respectively) with p < 0.01. There was no correlation between changes in the free amino acid content and fatty acid content (p > 0.05). By using Differential scanning calorimetry (DSC) analysis, we also found that there was no significant difference in peak temperature (Tp) between the VTR3 and EHAR experimental groups (p > 0.05). Variable temperature electric heating can affect the flavor of lamb, and there are significant differences in the content of flavor precursors such as fatty acids and amino acids in Xinjiang tannur-roasted mutton.
Read full abstract