This paper proposes a methodology for the layout selection of an urban drainage system as an extension to the methodology for an optimal sewer network design proposed by Duque, Duque, Aguilar, & Saldarriaga. The layout selection approach proposed in this paper uses an objective function that takes into account all input data in the problem, such as: land topography, street network topology, and inflow to each manhole. Once the layout is selected, the network is optimally designed using dynamic programming. The problem of layout selection is solved as a mixed-integer programming problem and is divided into two steps. The first step tries to define an initial layout using the network topology and land topography as a criterion. This allows for an initial hydraulic design and an approximation of the sewer network’s construction costs. The second step uses the data obtained in the previous process to establish an approximation of the construction costs of each arc that can be part of the layout. This is in order to minimize the objective function of the layout selection problem so that the hydraulic design cost is also minimized. The methodology was successfully tested on three case studies: the Chicó sewer network proposed by Duque et al. and two sewer network benchmarks from the literature.
Read full abstract