Drought is a major natural disaster that causes a reduction in rain-fed maize yield. Agricultural drought risk assessment is conducive to improving regional disaster management ability, thereby reducing food security risks and economic losses. Considering the complexity of risk assessment research, an increasing number of researchers are focusing on the multiple-criteria decision-making (MCDM) method. However, the applicability of the MCDM method to agro-meteorological disaster risk assessments is not clear. Therefore, this study comprehensively evaluated hazard, exposure, vulnerability, and emergency response and recovery capability using the TOPSIS and VIKOR models to generate a maize drought risk map in mid-western Jilin Province and ranked the drought risk of each county. The results showed that: (1) maize drought risk in the middle and west of Jilin province showed an increasing trend. Spatially, the risk diminished from west to east. The drought risks faced by Tongyu, Changchun, and Dehui were more severe; (2) the evaluation results of the two models were verified using the yield reduction rate. The VIKOR model was found to be more suitable for agrometeorological drought risk assessments; (3) according to the damage degree of drought disaster to maize, the cluster analysis method was used to divide the study area into three sub-regions: safe, moderate drought, and severe drought. Combined with the characteristics of different regions, suggestions on disaster prevention and mitigation are proposed. The results of this study can provide a basis for formulating strategies to alleviate drought, reduce losses, and ensure the sustainable development of agriculture.
Read full abstract