In order to understand the status of heavy metal pollution and the resulting ecological risk of farmland soil surrounding the manganese mining area, 174 soil samples were collected, and the heavy metals(Cu, Zn, Pb, Cr, Ni, Mn, As, and Hg) were analyzed. Principal component analysis (PCA) and the positive matrix factorization (PMF) model were used to determine the source of heavy metals in the soils. The single-factor pollution index method, geo-accumulation index method, potential ecological risk assessment method, and US EPA health risk assessment model were used to evaluate the ecological environment risk of heavy metals. The results showed that the average values of Cu, Zn, Cr, Ni, Mn, and Hg exceeded the background value of Guizhou. 100% of Zn samples and 38.86% of Cu samples exceeded the risk screening value for agricultural land soil pollution. Source analysis revealed that the main sources of soil heavy metals were mining emission, mixed agricultural activity and transportation, nature, and agricultural activities. The risk evaluation showed that Ni, Cr, Pb, and As belonged to the clean level, Hg and Cu were in a light pollution stage, Zn fell into the category of moderate contamination, and Mn reached the heavy pollution level. Cu, Zn, Pb, Cr, Ni, Mn, As, and Cd posed low potential ecological risk, while Hg caused a considerable potential ecological risk. In total, the integrated potential ecological risk of heavy metals was ranked "strong", eight types of heavy metals had carcinogenic risks and non-carcinogenic risks for children aged 0-5 years, and the main contributing factors were Cr and Mn, respectively.
Read full abstract