Retinal degenerative diseases cause blindness characterized by a progressive decline in the number and function of retinal pigment epithelium (RPE), photoreceptor cells, and ganglion cells. Such diseases include retinitis pigmentosa (RP), glaucomatous optic neuropathy, age-related macular degeneration and diabetic optic neuropathy. Recent studies have demonstrated that Müller glial cells (MGCs), an endogenous alternative source of retinal neurons, are important glial cells involved in retinal development, damage, and regeneration, making it an excellent target for retinal nerve regeneration. Although hardly differentiate into neuron cells, transplanted MGCs have been shown to induce partial recovery of visual function in experimental retinal degenerative models. This improvement is possibly attributed to the release of neuroprotective factors that derived from the MGCs. With the development of the therapeutic usage of pluripotent stem cell, application of induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs) originated derivation of MGCs have been widely used in retinal degenerative disease model such as glaucoma and retinitis pigmentosa model. This chapter summarized the relevant research and mechanisms and provided a broader application and research prospects for effective treatments in retinal degenerative diseases.
Read full abstract