BackgroundPuncture training with simulation models has emerged as a critical method for transmitting puncture skills, improving success rates, and minimizing injuries. Yet, obstacles such as proper material for ultrasound guidance, restricted options of 3D printing resources, and available substances to simulate human skin and muscle still hinder the production of simulation models that closely replicate clinical practice. This study aimed to develop a selective laser melting (SLM), 3D-printed simulation model that replicated the spine and skin contours of patients with spinal scoliosis.MethodsThe 3D models of the scoliotic spines were developed from 3D reconstructions of high-resolution, computed tomography images from patients with spinal scoliosis, while the models of the skin to the bone structure were constructed based on the 3D reconstructions of the skin contours. SLM technology was used to print 3D models of the patients’ spines. Gelatin casting was implemented to simulate the patients’ skin and muscle tissues and to meet ultrasound anatomical requirements. Practical puncture training, which closely resembles clinical puncture practice, was then carried out to validate the effectiveness of the model. Improvements in proficiency and confidence in performing ultrasound-guided punctures after the simulation-model training were evaluated using the paired sample t test.ResultsThis research utilized 3D digital modeling, SLM 3D printing technology, and gelatin casting to establish simulation models of patients’ spines and skin contours impacted by spinal scoliosis. The use of medical grade stainless steel material for modeling the spine and gelatin for skin and muscle tissues ensured the model had superior ultrasound anatomical properties. After the simulation training session, participants’ proficiency and confidence in both ultrasound-assisted positioning and real-time guided puncture showed significant improvement, demonstrating the effectiveness of the simulation training model.ConclusionsThe simulation model closely mimicked real clinical situations and was an effective training tool for medical professionals. Furthermore, these findings demonstrated the potential of 3D printing technology in developing simulation models that closely replicate real-world clinical scenarios and may have significant implications for medical education and training.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
288 Articles
Published in last 50 years
Articles published on Restricted Options
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
270 Search results
Sort by Recency