The renewable energy transition hinges on balancing energy supply and demand across seasons. This paper investigates the potential flexibility of Switzerland’s integrated power, hydrogen, and methane infrastructure to balance temporal mismatches while complying with national energy policies for sustainability and security. It develops an optimization method for energy system expansion and operation planning, filling crucial research gaps by (1) explicitly modeling power and gas transmission networks to guide technology placement and pinpoint network expansions, and (2) incorporating flexibility in power demand via shedding and shifting and in hydrogen and methane demands via price elasticity. The findings suggest that a 6.7-fold capacity expansion of variable renewables (i.e., photovoltaic, wind, run-of-river) by 2050 offsets nuclear phase-out and demand growth. The winter power gap is filled by power imports, hydropower generation, and gas turbines fueled by cost-effective hydrogen or methane imports. However, fuel embargoes escalate winter hydrogen and methane prices, reducing demand by 3.8%–10.4% and increasing domestic fuel production from biomass and excess renewable power in summer. To bridge the seasonal hydrogen and methane supply–demand gaps, up to 1.9 terawatt-hours of gas cavern storage is deployed in geologically viable locations, while costly tank storage plays a minor role. Power-to-gas requirements and power trade restrictions necessitate further renewable expansion, including 8.0 to 9.5 gigawatts of wind installations.
Read full abstract