ABSTRACTAs the resolution of Synthetic Aperture Radar (SAR) images increases, the fine-grained classification of ships has become a focus of the SAR field. In this paper, a ship classification framework based on deep residual network for high-resolution SAR images is proposed. In general, networks with more layers have higher classification accuracy. However, the training accuracy degradation and the limited dataset are major problems in the training process. To build deeper networks, residual modules are constructed and batch normalization is applied to keep the activation function output. Different fine tuning strategies are used to select the best training scheme. To take advantage of the proposed framework, a dataset including 835 ship slices is augmented by different multiples and then used to validate our method and other Convolutional Neural Network (CNN) models. The experimental results show that, the proposed framework can achieve a 99% overall accuracy on the augmented dataset under the optimal fine-tuning strategy, 3% higher than that in other models, which demonstrates the effectiveness of our proposed approach.
Read full abstract