Optical microscopy is widely regarded to be an indispensable tool in healthcare and manufacturing quality control processes, although its inability to resolve structures separated by a lateral distance under ~200 nm has culminated in the emergence of a new field named fluorescence nanoscopy, while this too is prone to several caveats (namely phototoxicity, interference caused by exogenous probes and cost). In this regard, we present a triplet string of concatenated O-Net ('bead') architectures (termed 'Θ-Net' in the present study) as a cost-efficient and non-invasive approach to enhancing the resolution of non-fluorescent phase-modulated optical microscopical images in silico. The quality of the afore-mentioned enhanced resolution (ER) images was compared with that obtained via other popular frameworks (such as ANNA-PALM, BSRGAN and 3D RCAN), with the Θ-Net-generated ER images depicting an increased level of detail (unlike previous DNNs). In addition, the use of cross-domain (transfer) learning to enhance the capabilities of models trained on differential interference contrast (DIC) datasets [where phasic variations are not as prominently manifested as amplitude/intensity differences in the individual pixels unlike phase-contrast microscopy (PCM)] has resulted in the Θ-Net-generated images closely approximating that of the expected (ground truth) images for both the DIC and PCM datasets. This thus demonstrates the viability of our current Θ-Net architecture in attaining highly resolved images under poor signal-to-noise ratios while eliminating the need for a priori PSF and OTF information, thereby potentially impacting several engineering fronts (particularly biomedical imaging and sensing, precision engineering and optical metrology).
Read full abstract