With the increasing diversification of application environments of new electronic products, demands are being placed on flexibility, transparency, and stable operation capability even under harsh conditions of electromagnetic shielding films. Aiming at the issue of high contact resistance of simple silver nanowire (AgNWs) conducting network, this work utilizes orthogonally arranged AgNWs and graphene oxide (GO) to establish unique AgNWs/GO conductive network, achieving more conductive nodes and enhancing the stability of the conductive network. The resulting AgNWs/GO film exhibits a reduced resistance of 9.8 Ω/sq, an impressive light transmittance of 85.7 % (λ = 550 nm), and excellent electromagnetic interference shielding efficiency (EMI SE) reaching 30.3 dB in the X-band (8.2–12.4 GHz). Moreover, the AgNWs/GO film exhibits the potential for long-term operation in harsh environments. After undergoing numerous bending cycles (10,000 times), prolonged exposure (90 days), and repeated energization (800 times), the resistance of the AgNWs/GO film remains extremely stable. Furthermore, the film demonstrates remarkable electrothermal conversion capability in cold environments, rapidly heating to 73.3 ℃ under a 4 V voltage and maintaining stability thereafter. After 800 h of operation, there is negligible change in its electrothermal properties. The development of such a flexible electromagnetic shielding film holds significant implications for various applications.
Read full abstract