Recent light scattering experiments regarding the apoferritin molecules (the hollow shells of the iron-storage protein ferritin) indicated a surprising dependence of the repulsion between proteins on the electrolyte concentration (NaCH3COO). The second virial coefficient decreased to a value close to that corresponding to hard spheres for 0.15 M but increased to a very large value at 0.25 M. The results are difficult to be interpreted in the classical framework through the addition of double layer and hydration repulsive forces. While the double layer theory can predict the behavior of the virial coefficient at low electrolyte concentrations, only an abnormally large charge can explain the values of the virial coefficient at high ionic strengths. Alternatively, the traditional hydration force should increase with orders of magnitude between 0.15 and 0.25 M, to be consistent with experiment, and this is unlikely to happen. In this paper, it is shown that a unitary treatment of the repulsion (the double layer and the polarization-based hydration repulsions) might explain the unexpected values of the second virial coefficient and the corresponding long-ranged repulsion.
Read full abstract