A wearable glove-based sensor is a portable and practical approach for onsite detection/monitoring of a variety of chemical threats. Herein, we report a flexible and sensitive wearable sensor fabricated on the nitrile glove fingertips by stencil-printing technique. The working electrodes were modified with multiwalled carbon nanotubes (MWCNTs)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) for sensitive and real-time analyses of hazardous or chemical treats, as picric acid (PA) explosive, diazepam (DZ) as drug-facilitated crimes and the emerging pollutant 4-nitrophenol (4-NP). The multi-sensing platform towards PA, 4-NP, and DZ offers the ability of in-situ qualitative and quantitative analyses of powder and liquid samples. A simple sampling by touching or swiping the fingertip sensor on the sample or surface under investigation using an ionic hydrogel combined with fast voltammetry measurement provides timely point-of-need analyses. The wearable glove-based sensor uses the square wave voltammetry (SWV) technique and exhibited excellent performance to detect PA, 4-NP, and DZ, resulting in limits of detection (LOD) of 0.24 μM, 0.35 μM, 0.06 μM, respectively, in a wide concentration range (from 0.5 μM to 100 μM). Also, we obtained excellent manufacturing reproducibility with relative standard deviations (RSD) in the range of 3.65%–4.61% using 7 different wearable devices (n = 7) and stability in the range of 4.86%–6.61% using different electrodes stored for 10 days at room temperature (n = 10), demonstrating the excellent sensor-to-sensor reproducibility and stability for reliable in-field measurements. The stretchable sensor presented great mechanical robustness, supporting up to 80 bending or stretching deformation cycles without significant voltammetric changes. Collectively, our wearable glove-based sensor may be employed for analyses of chemical contaminants of concern, such as explosives (PA), drugs (DZ), and emerging pollutants (4-NP), helping in environmental and public safety control.
Read full abstract