Inter-individual variability in fine-grained functional topographies poses challenges for scalable data analysis and modeling. Functional alignment techniques can help mitigate these individual differences but they typically require paired brain data with the same stimuli between individuals, which are often unavailable. Here we present a neural code conversion method that overcomes this constraint by optimizing conversion parameters based on the discrepancy between the stimulus contents represented by original and converted brain activity patterns. This approach, combined with hierarchical features of deep neural networks as latent content representations, achieves conversion accuracies that are comparable with methods using shared stimuli. The converted brain activity from a source subject can be accurately decoded using the target's pre-trained decoders, producing high-quality visual image reconstructions that rival within-individual decoding, even with data across different sites and limited training samples. Our approach offers a promising framework for scalable neural data analysis and modeling and a foundation for brain-to-brain communication.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
2392 Articles
Published in last 50 years
Articles published on Representation Of Content
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
2317 Search results
Sort by Recency